Answer: 41.5 mL
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
Given : 59.4 g of
in 100 g of solution
moles of 
Volume of solution =
Now put all the given values in the formula of molality, we get

To calculate the volume of acid, we use the equation given by neutralisation reaction:

where,
are the molarity and volume of stock acid which is 
are the molarity and volume of dilute acid which is 
We are given:

Putting values in above equation, we get:

Thus 41.5 mL of the solution would be required to prepare 1550 mL of a .30M solution of the acid
Nothing, he shouldn’t be able to move it. Think about it like this say you try really hard to push something that is 5,000 pounds and you push as hard as you can. Well you can’t move it bc it weighs more than you can push. I’m sure their is a equation you can use to see how much you can push (body weight=force?)
Pink and fluffy and squishy mangos
Answer:
Evaporation
Explanation:
Heat makes molecules move and eventually evaporate.
Answer is: this is an example of an Arrhenius acid.
An Arrhenius acid is a
substance that dissociates in water to form hydrogen ions or protons (H⁺).
For example hydrochloric acid: HCl(aq) → H⁺(aq) + Cl⁻(aq).
An Arrhenius base is a
substance that dissociates in water to form hydroxide ions (OH⁻<span>).
In this example lithium hydroxide is an Arrhenius base:</span>
LiOH(aq) → Li⁺(aq) + OH⁻(aq).