pH=6.98
Explanation:
This is a very interesting question because it tests your understanding of what it means to have a dynamic equilibrium going on in solution.
As you know, pure water undergoes self-ionization to form hydronium ions, H3O+, and hydroxide anions, OH−.
2H2O(l]⇌H3O+(aq]+OH−(aq]→ very important!
At room temperature, the value of water's ionization constant, KW, is equal to 10−14. This means that you have
KW=[H3O+]⋅[OH−]=10−14
Since the concentrations of hydronium and hydroxide ions are equal for pure water, you will have
[H3O+]=√10−14=10−7M
The pH of pure water will thus be
pH=−log([H3O+])
pH=−log(10−7)=7
Now, let's assume that you're working with a 1.0-L solution of pure water and you add some 10
A noble gas is different from other elements because <u>they are the most stable elements that can have the maximum number of valence electrons on their outer shells.</u> This characteristic allows the noble gases to rarely react with other elements, unlike all the other elements found within the periodic table. Nobel gases are found in the group 18 of the periodic table and these are Argon, Neon, Krypton, Xenon, Organesson, Helium, and Radon.
Amino acids join end to end to form proteins since they are monomers.
<span />
Answer:
-219.99kJ
Explanation:
The acronym '' NADH'' simply stands for what is known as coenzyme 1 with full meaning of Nicotinamide Adenine Dinucleotide Hydride. This substance is useful in the production of energy. The oxidation reaction of NADH causes it to produce NADP⁺ and the oxygen produces water when it is in the reduction process. The balanced equation for the oxidation reaction is given below as:
NADPH ---------------------------------------------------------------------> NADP⁺H⁺ + 2e⁻.
Also, the balanced equation for the reduction reaction is given below as:
O₂ + 2H⁺ + 2e⁻ --------------------------------------------------------------> H₂O.
It can be shown from the above REDOX reaction that the total number of electrons getting transferred is 2.
The Gibbs energy = -nFE. where n = 2, F = faraday's constant = 96485.3329 C and E = overall cell potential.
The overall cell potential = E[ reduction reaction] - E[oxidation reaction] = 0.82 - (- 0.32 ) = 1.14 V.
Hence, the Gibbs energy = - 2 × 96485.3329 × 1.14 = -219.99kJ