The electrons and the nuclei will settle into positions that minimize repulsion and maximize attraction.
Given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
<h3>How to calculate mass of substances?</h3>
The mass of a substance can be calculated using the following steps:
Cu + 2AgNO3 = Cu(NO3)2 + 2Ag
1 mole of Cu react with 2 moles of AgNO3
- Molar mass of AgNO3 = 169.87 g/mol
- Molar mass of Cu = 63.5g/mol
moles of AgNO3 = 262g/169.87g/mol = 1.54mol
1.54 moles of AgNO3 will react with 0.77 moles of Cu.
mass of Cu = 0.77 × 63.5 = 48.97g
Therefore, given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
Learn more about mass at: brainly.com/question/6876669
It’s positive when you use energy for work
Wikipedia
Blogs from random people
Answer:
2 HC₂H₃O₂(aq) + Sr(OH)₂(aq) ⇒ Sr(C₂H₃O₂)₂(aq) + 2 H₂O
Explanation:
Let's consider the reaction between acetic acid and strontium hydroxide. This is a neutralization reaction, in which an acid reacts with a base to form salt and water. The unbalanced equation is:
HC₂H₃O₂(aq) + Sr(OH)₂(aq) ⇒ Sr(C₂H₃O₂)₂(aq) + H₂O
We have 1 acetate ion to the left and 2 to the right, so we will multiply HC₂H₃O₂(aq) by 2.
2 HC₂H₃O₂(aq) + Sr(OH)₂(aq) ⇒ Sr(C₂H₃O₂)₂(aq) + H₂O
Finally, we multiply water by 2 to get the balanced equation.
2 HC₂H₃O₂(aq) + Sr(OH)₂(aq) ⇒ Sr(C₂H₃O₂)₂(aq) + 2 H₂O