Answer: Go to the harbor. When a ship sails off toward the horizon, it doesn't just get smaller and smaller until it's not visible anymore. Instead, the hull seems to sink below the horizon first, then the mast. When ships return from sea, the sequence is reversed: First the mast, then the hull, seem to rise over the horizon.
Climbing to a high point will allow you to be able to see farther if you go higher. If the Earth was flat, you'd be able to see the same distance no matter your elevation
-- The acceleration due to gravity is 32.2 ft/sec² . That means that the
speed of a falling object increases by an additional 32.2 ft/sec every second.
-- If dropped from "rest" (zero initial speed), then after falling for 4 seconds,
the object's speed is (4.0) x (32.2) = <em>128.8 ft/sec</em>.
-- 128.8 ft/sec = <em>87.8 miles per hour</em>
Now we can switch over to the metric system, where the acceleration
due to gravity is typically rounded to 9.8 meters/sec² .
-- Distance = (1/2) x (acceleration) x (time)²
D = (1/2) (9.8) x (4)² =<em> 78.4 meters</em>
-- At 32 floors per 100 meters, 78.4 meters = dropped from the <em>25th floor</em>.
The 5 points are certainly appreciated, but I do wish they were Celsius points.
Answer:
Explanation:
Acceleration
is expressed in the following formula:
Where:
is the final velocity of the projectile
is the initial velocity of the projectile
is the time
Solving:
This is the acceleration of the projectile
Potential Energy = mgh,
where m = mass in kg, g ≈ 10 m/s², h = height above ground = 8 m
PE = mgh
= 70*10*8 = 5600 J