Answer;
-(2) An atom is mostly empty space.
Experiment
-Rutherford conducted the "gold foil" experiment where he shot alpha particles at a thin sheet of gold. The conclusion that can be drawn from these experiment is that an atom is mostly empty space.
-Rutherford found that a small percentage of the particles were deflected, while a majority passed through the sheet. This caused Rutherford to conclude that the mass of an atom was concentrated at its center, as the tiny, dense nucleus was causing the deflections.
The reactivity of metals increases as you move left in a period and as you move down in a group, so Marie needs to know the period and group of the element inside each box. Boxes that show locations in groups 1 or 2 or in period 8 contain the most reactive elements.
Answer:
A is the molecular formula for xylose because shows the actual number of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the molecular formula for xylose because shows the arrangement of atoms in the compound: Formula B is the structurab formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the empirical formula for xylose because it shows the actual number of atoms in the compound: Formula B is the molecular formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the structural formula for xylose because it shows the arrangement of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound.
Answer:
151.4863 years
Explanation:
Half life, t1/2 = 100 years
Initial concentration,[A]o = 100%
Final concentration, [A] = 35% (after 65% have been decayed)
Time = ?
Half life for a first Order reaction is given as;
t1/2 = ln (2) / k
k = ln(2) / 100
k = 0.00693y-1
The integral rate law for first order reactions is given as;
ln[A] = ln[A]o − kt
kt = ln[A]o - ln[A]
t = ( ln[A]o - ln[A]) / k
t = [ln(100) - ln(35)] /0.00693
t = 1.0498 / 0.00693
t = 151.4863 years
Answer:
(a) The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
Explanation:
Q is the coefficient of the reaction and is calculated the same of the way of the equilibrium constant, but using the concentrations or partial pressures in any moment of the reaction, so, for the reaction given:
Q = (pBrCl)²/(pBr₂*pCl₂)
Q = 2²/(1x1)
Q = 4
As Q < Kp, the reaction didn't reach the equilibrium, and the value must increase. As we can notice by the equation, Q is directly proportional to the partial pressure of BrCl, so it must increase, and be greater than 2.00 atm in the equilibrium.
The partial pressures of Br₂ and Cl₂ must decrease, so they will be smaller than 1.00 atm. And the total pressure must not change because of the stoichiometry of the reaction: there are 2 moles of the gas reactants for 2 moles of the gas products.
Because is a reversible reaction, it will not go to completion, it will reach an equilibrium, and as discussed above, the partial pressures will change.