Answer:
T final = 80°C
Explanation:
∴ Q = 18000 cal
∴ m H2O = 300 g
∴ Cp H2O (15°C) = 0.99795 cal/g.K ≅ 1 cal/g.K
∴ T1 = 20°C = 293 K
∴ T2 = ?
⇒ 18000 cal = (300 g)(1 cal/g.K)(T2 - 293 K)
⇒ (18000 cal)/(300 cal/K) = T2 - 293 K
⇒ T2 = 293 K + 60 K
⇒ T2 = 353 K (80°C)
To answer this question, we will use the general gas law which states that:
PV = nRT where:
P is the pressure of the gas = <span>10130.0 kPa
</span>V is the volume of the gas = 50 liters
n is the number of moles that we want to calculate
R is the gas constant = <span>8.314 L∙kPa/K∙mol
T is the temperature = 300+273 = 573 degree kelvin
Substitute with the givens in the equation to get the number of moles as follows:
</span><span>10130 * 50 = n * 8.314 * 573
506500 = 4763.922 n
n = </span>506500 / 4763.922
n = 106.3199 moles
Answer:
115g/mol
Explanation:
To get the molar mass, we know that the it is equal to the mass divided by the number of moles. We have the mass but we do not have the number of moles.
We get this by working through the solution information. Firstly, we need to know the number of moles in 750ml for a molarity of 0.29m
Now, since 0.29 moles is present in 1000ml, x moles will be present in 750ml
The value of x is obtained as follows:
x = (750 * 0.29)/1000 = 0.2175 moles
Now since we have the number of moles, we can then obtain the molar mass.
Molar mass = mass/number of moles = 25.0g/0.2175 = 114.94 approximately 105g/mol
Answer:
Mg
Explanation:
If one were comparing just the neutral atoms Mg and S, the S atom would be smaller as both elements are in the same period and sulfur is more to the right
<span> because gasoline changes volume as a function of temperature or because there are different grades of gasoline or because the values are given in different units of measure .</span>