Decrease the amount of work done.
To solve this problem we will apply the momentum conservation theorem, that is, the initial momentum of the bodies must be the same final momentum of the bodies. The value that will be obtained will be a vector value of the final speed of which the magnitude will be found later. Our values are given as,




Using conservation of momentum,


Solving for 

Using the properties of vectors to find the magnitude we have,


Therefore the magnitude of the velocity of the wreckage of the two cars immediately after the collision is 12.4135m/s
Answer:
D. is greater for turbulent flow than for laminar flow
Explanation:
what is friction drag?
- friction drag is a phenomenon experienced when a body moves through a fluid. A practical example can be seen in the mild warmth we experience rubbing the palm's of one's hand together only in this case we are dealing with a solid body and a fluid (e.g air, water). friction drag is directly proportional to the area of the surface in contact with the fluid and increases as velocity increases. We see a practical example of this when the rate at which one rubs the palms together is fast but we use the word turbulent when we are dealing with fluids. Turbulent flow creates more friction drag than laminar flow( Flow between a smooth body and fluid) due to its greater interaction with the surface of the body
- it is important to know that friction is also called viscous drag or skin drag
- I recommend Richardson and coulson vol 2 textbook, page 149, Chemical enginering fluid mechanics textbook by Ron dardy, page 341 for clearer explanation