Answer:
![\lambda =6.32\ cm](https://tex.z-dn.net/?f=%5Clambda%20%3D6.32%5C%20cm)
Explanation:
given,
number of cycle complete (f) = 116 cycles per minute
wavelength observed at 11 m in 1.5 m.
![v = \dfrac{distance}{time}](https://tex.z-dn.net/?f=v%20%3D%20%5Cdfrac%7Bdistance%7D%7Btime%7D)
![v = \dfrac{11}{1.5}](https://tex.z-dn.net/?f=v%20%3D%20%5Cdfrac%7B11%7D%7B1.5%7D)
v = 7.33 m/s
![\lambda = \dfrac{v}{f}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cdfrac%7Bv%7D%7Bf%7D)
![\lambda = \dfrac{7.33}{116}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cdfrac%7B7.33%7D%7B116%7D)
![\lambda =0.0632\ m](https://tex.z-dn.net/?f=%5Clambda%20%3D0.0632%5C%20m)
![\lambda =6.32\ cm](https://tex.z-dn.net/?f=%5Clambda%20%3D6.32%5C%20cm)
The wavelength of the wave is equal to ![\lambda =6.32\ cm](https://tex.z-dn.net/?f=%5Clambda%20%3D6.32%5C%20cm)
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
So,
a) 0 < r < r1 :
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
Hence, E = 0 for r < r1
b) r1 < r < r2:
Electric field =?
Let, us consider the Gaussian Surface,
E x 4
= ![\frac{Q1}{E_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7BQ1%7D%7BE_%7B0%7D%20%7D)
So,
Rearranging the above equation to get Electric field, we will get:
E = ![\frac{Q1}{E_{0} . 4 \pi. r^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7BQ1%7D%7BE_%7B0%7D%20.%204%20%5Cpi.%20r%5E%7B2%7D%20%20%20%7D)
Multiply and divide by
E =
x ![\frac{r1^{2} }{r1^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7Br1%5E%7B2%7D%20%7D%7Br1%5E%7B2%7D%20%7D)
Rearranging the above equation, we will get Electric Field for r1 < r < r2:
E= (σ1 x
) /(
x
)
c) r > r2 :
Electric Field = ?
E x 4
= ![\frac{Q1 + Q2}{E_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7BQ1%20%2B%20Q2%7D%7BE_%7B0%7D%20%7D)
Rearranging the above equation for E:
E = ![\frac{Q1+Q2}{E_{0} . 4 \pi. r^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7BQ1%2BQ2%7D%7BE_%7B0%7D%20.%204%20%5Cpi.%20r%5E%7B2%7D%20%20%20%7D)
E =
+ ![\frac{Q2}{E_{0} . 4 \pi. r^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7BQ2%7D%7BE_%7B0%7D%20.%204%20%5Cpi.%20r%5E%7B2%7D%20%20%20%7D)
As we know from above, that:
= (σ1 x
) /(
x
)
Then, Similarly,
= (σ2 x
) /(
x
)
So,
E =
+ ![\frac{Q2}{E_{0} . 4 \pi. r^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7BQ2%7D%7BE_%7B0%7D%20.%204%20%5Cpi.%20r%5E%7B2%7D%20%20%20%7D)
Replacing the above equations to get E:
E = (σ1 x
) /(
x
) + (σ2 x
) /(
x
)
Now, for
d) Under what conditions, E = 0, for r > r2?
For r > r2, E =0 if
σ1 x
= - σ2 x ![r2^{2}](https://tex.z-dn.net/?f=r2%5E%7B2%7D)
<u>Displacement</u> is the difference between final position and initial position.
<u>Momentum</u> is the quantity of motion contained by an object.
- It is the product of <em><u>mass and velocity.</u></em>
Capacitance is a measure of charge stored per volt.
Explanation:
change 0.5 g to kg so 0.005kg then change 100 ml to m so 0.001m so density=mass over volume so from there you can continue