According to the condensation theory, the most important factor for the formation of our planets was "the interstellar dust attracting heat away from the protosun".
Condensation is the procedure by which water particles noticeable all around bunch together and shape fluid water. This is regularly observed outwardly of cold glasses. This idea additionally identifies with the solar system.
The condensation theory of the solar system expresses that our solar system, and perhaps all other galaxies, were shaped from a cloud of residue and gas that consolidated into strong issue. Space experts trust that the littlest grains of residue in our cloud applied a draw on the gas about it, 'consolidating' into bigger and bigger bits of issue, similarly as a snowball moving downhill will become bigger and bigger. In the long run, the gravitational draw of these residue atoms was sufficiently solid that they started to pull in each other, developing into greater and greater clusters that had more grounded gravitational pulls. In the long run, these bunches of residue and gas from the cloud frame a star, and potentially planets, space rocks, and comets turning about the star.
When you hold a spinning wheel, the wheel and you, chair included, form a system that obeys the principle of "conservation of angular momentum". This means that any changes in angular momentum within the system must accompanied by an equal and opposite change, so the net force is zero.
Answer:
3.25 seconds
Explanation:
It is given that,
A person throws a baseball from height of 7 feet with an initial vertical velocity of 50 feet per second. The equation for his motion is as follows :

Where
s is the height in feet
For the given condition, the equation becomes:

When it hits the ground, h = 0
i.e.

It is a quadratic equation, we find the value of t,
t = 3.25 seconds and t = -0.134 s
Neglecting negative value
Hence, for 3.25 seconds the baseball is in the air before it hits the ground.
Answer: 1.51 km
Explanation:
<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.
Or, 
Where Q1 and Q2 are magnitude of two charges and r is distance between them:
<u>Given:</u>
Q1 = Charge near top of cloud = 48.8 C
Q2 = Charge near the bottom of cloud = -41.7 C
Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N
k = 8.99 x 109Nm^2/C^2
<u>So,</u>

Therefore, the separation between the two charges (r) = 1.51 km