Answer:
t = 39.60 s
Explanation:
Let's take a careful look at this interesting exercise.
In the first case the two motors apply the force in the same direction
F = m a₀
a₀ = F / m
with this acceleration it takes t = 28s to travel a distance, starting from rest
x = v₀ t + ½ a t²
x = ½ a₀ t²
t² = 2x / a₀
28² = 2x /a₀ (1)
in a second case the two motors apply perpendicular forces
we can analyze this situation as two independent movements, one in each direction
in the direction of axis a, there is a motor so its force is F/2
the acceleration on this axis is
a = F/2m
a = a₀ / 2
so if we use the distance equation
x = v₀ t + ½ a t²
as part of rest v₀ = 0
x = ½ (a₀ / 2) t²
let's clear the time
t² = (2x / a₀) 2
we substitute the let of equation 1
t² = 28² 2
t = 28 √2
t = 39.60 s
Answer:
a) the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s
b) the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s
Explanation:
Given the data in the question;
as the equation of standing wave on a string is fixed at both ends
y = 2AsinKx cosωt
but k = 2π/λ and ω = 2πf
λ = 4 × 0.150 = 0.6 m
and f = v/λ = 260 / 0.6 = 433.33 Hz
ω = 2πf = 2π × 433.33 = 2722.69
given that A = 2.20 mm = 2.2×10⁻³
so
= A × ω
= 2.2×10⁻³ × 2722.69 m/s
= 5.9899 m/s
therefore, the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s
b)
A' = 2AsinKx
= 2.20sin( 2π/0.6 ( 0.075) rad )
= 2.20 sin( 0.7853 rad ) mm
= 2.20 × 0.706825 mm
A' = 1.555 mm = 1.555×10⁻³
so
= A' × ω
= 1.555×10⁻³ × 2722.69
= 4.2338 m/s
Therefore, the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s
Answer: Methane
Explanation: I just took the AP€X quiz and Methane was the correct answer!