You'd use the temperature change equation. The specific heat of water is always 4.18J/(g °C).
Equation to use: q=mCΔT
21.8=(2.0)(4.18)(Tf-5)
21.8=(8.36)(Tf-5)
21.8/8.36=Tf-5
2.61=Tf-5
2.61+5=Tf
Tf=7.61 °C
Since you want to know how many °C it raises, you wouldn't pay attention to the last 2 steps, however if you need to know the final temp, you want to go to the last step.
We have that every gas satisfies the fundamental gas equation, PV=nRT where P is the Pressure, V is the volume of the gas, n are the moles of the gas, R is a universal constant and T is the Temperature in Kelvin. We have that PV/T=nR and during our process, the moles of the gas do not change (no argon enters or escapes our sample). See attached.
You are going to fall, face first on the ground.
The balanced chemical reaction is:
<span>Ca + Cl2 = CaCl2
</span>
We are given the amount of calcium metal to be used for this reaction. This will be the starting point for the calculations.
56 g Ca ( 1 mol Ca / 40.08 g Ca) (1 mol Cl2 / 1 mol Ca) ( 22.414 L Cl2 / 1 mol Cl2 ) = 31.32 L Cl2 gas produced from the reaction
Answer:
B - What we change
Explanation:
Dependent Variable - What we measure
Control Variable - what stays the same
Conclusion - what we conclude
<em>Hope</em><em> </em><em>this</em><em> </em><em>can</em><em> </em><em>Help</em><em>!</em>
<em>:</em><em>D</em>