Any substance changes to another substance that means the change of the physical property. Like water () has different state which changes as the temperature changes. It remain as liquid in the room temperature, in solid form at or below 0°C and vapor phase on or above 100°C. But in all the stage or phase of the substance the composition of the water i.e. remains. Thus the chemical property remains fixed when a substance change to other substance.
Answer:
A, is a girl balancing on her hands, a red arrow is pointing up and is the same length as an arrow pointing down.
Explanation:
vvEven she was still on her feet the force thats pulling her down is gravity and when you have figure the force that makes it easier so when the 2 arrows are the same size that means the force is balenced
please brailiest please i need one more
Answer:
<h2>F=Gm1m2r=G×1×11=G</h2>
Explanation:
<h2>______________________________</h2>
<h2>(*˘︶˘*).。*♡</h2>
<h2>
<em><u>PLEASE</u></em><em><u> MARK</u></em><em><u> ME</u></em><em><u> BRAINLIEST</u></em><em><u> AND</u></em><em><u> FOLLOW</u></em><em><u> M</u></em><em><u> E</u></em><em><u> LOTS</u></em><em><u> OF</u></em><em><u> LOVE</u></em><em><u> FROM</u></em><em><u> MY</u></em><em><u> HEART</u></em><em><u> AND</u></em><em><u> SOUL</u></em><em><u> DARLING</u></em><em><u> TEJASWINI</u></em><em><u> SINHA</u></em><em><u> HERE</u></em><em><u> ❤️</u></em></h2>
1. The answer is option E, that is None of the above is correct.
As a polymer becomes more crystalline,
its melting point doesn't decreases, its density doesn't decreases, its stiffness doesn't decreases and its yield stress doesn't decreases.
2. The answer is option B, that is the molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.
In the smectic A liquid-crystalline phase, molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.
3. For a substitutional alloy to form, the two metals combined must have similar atomic radii and chemical bonding properties.
Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction, it is possible for us to calculate the produced grams of nitrogen monoxide by starting with 25.0 g of nitrogen via their 1:2 mole ratio and the molar masses of 30.1 g/mol and 28.02 g/mol, respectively and by some stoichiometry:

Best regards!