The second degree polynomial with leading coefficient of -2 and root 4 with multiplicity of 2 is:

<h3>
How to write the polynomial?</h3>
A polynomial of degree N, with the N roots {x₁, ..., xₙ} and a leading coefficient a is written as:

Here we know that the degree is 2, the only root is 4 (with a multiplicity of 2, this is equivalent to say that we have two roots at x = 4) and a leading coefficient equal to -2.
Then this polynomial is equal to:

If you want to learn more about polynomials:
brainly.com/question/4142886
#SPJ1
The shadow to the top of the tree is 60 ft it all makes sense
Answer:
Y= -4X + 8
Step-by-step explanation:
Use rise/run to find slope (y2- y1/ x2-x1). Plug the slope into point-slope form [y-y1= m(x-x1)]. this is your answer
Answer:
Step-by-step explanation:
Let the integer be 6 for even and 7 for odd (say)
For 6, we divide by 2, now get 3. Now we multiply by 3 and add 1 to get 10. Now since 10 is even divide by 5, now multiply by 3 and add 1 to get 16. Now divide by 2 again by 2 again by 2 again by 2 till we get rid of even numbers.
The result is 1, so multiply by 3 and add 1 we get 4 now divide 2 times by 2 to get 1, thus this result now again repeats after 2 times.
Say if we select off number 3, multiply by 3 and add 1 to get 10 now divide by 5, now repeat the same process as above for 5 until we get 1 and it gets repeated every third time.
Thus whether odd or even after some processes, we get 1 and the process again and again returns to 1.