Answer:
The condor has a wing span of 10 feet
Explanation:
This can be solved by a simple rule of three
In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.
When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too. In this case, the rule of three is a cross multiplication.
When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease. In this case, the rule of three is a line multiplication.
In this problem, our measures are the wing span of the condon in meters and the wing span of the condor is feet. As the value of one of these measures increases, the other is going to increase too.
We know that 1m has 3.281 feet,
So we have the following rule of three:
1m - 3.281 feet
3.05m - x feet
x = 3.821*3.05
x = 10 feet
The condor has a wing span of 10 feet
'cause alphe-particle which was +ve charge, get repulsion from the atom, so he deducted that.......
Explanation:
The sum of total number of protons present in an element is known as atomic number of the element.
- As atomic number of Cs is 55.
And, it is known that for a neutral atom the number of protons equal to the number of electrons.
Since, no charge in present on given Cs atom it means that it is neutral in nature. Hence, number of protons and electrons present in Cs are 55.
- For Ba, it is also neutral in nature and atomic number of barium is 56. Hence, number of protons and electrons present in Ba are 56.
- For S, there is no charge on it so it is also neutral in nature. Atomic number of S is 16. Hence, number of protons and electrons present in S are 16.
Answer:
Explained below
Explanation:
Metalloids are elements that possess properties between that of metals and non - metals or that have properties that a re a combination of those of metals and non - metals. Whereas a metal is one that conducts electricity and heat very well.
Now, the property they both share is that they both possess valence orbitals which are highly de-localized over macroscopic volumes, thereby allowing both of them to be conductors of electricity although it has to be said that Metalloids don't conduct electricity as much as metals.