It gains or loses electrons to become like the Noble gases having 8 valence electrons to become the most stable.
Answer:
thank you
So much this was very nice.
Answer:
-255.4 kJ
Explanation:
The free energy of a reversible reaction can be calculated by:
ΔG = (ΔG° + RTlnQ)*n
Where R is the gas constant (8.314x10⁻³ kJ/mol.K), T is the temperature in K, n is the number of moles of the products (n =1), and Q is the reaction quotient, which is calculated based on the multiplication of partial pressures by the partial pressure of the products elevated by their coefficient divide by the multiplication of the partial pressure of the reactants elevated by their coefficients.
C₂H₂(g) + 2H₂(g) ⇄ C₂H₆(g)
Q = pC₂H₆/[pC₂H₂ * (pH₂)²]
Q = 0.261/[8.58*(3.06)²]
Q = 3.2487x10⁻³
ΔG = -241.2 + 8.314x10⁻³x298*ln(3.2487x10⁻³)
ΔG = -255.4 kJ
40.1g of nitrogen gas is produced.
The equation given is
2 NH₃ + 3 CuO →3 Cu + N₂ + 3 H₂O
This equation is already balanced.
When 3 moles of CuO are consumed, 1 mole of nitrogen gas is produced.
We get 1 mole of nitrogen from 3 moles of copper oxide.
We need to find the number of moles of nitrogen gas produced when 4.3 moles of copper oxide are consumed.
4.3/3 x 1 = 1.433 mols
- 1.433 mols of nitrogen gas are produced
- The molar mass of nitrogen gas is 14+14 = 28g
- The amount of nitrogen gas produced in grams is 28x1.433 = 40.1g
40.1g of nitrogen gas can be made when 4.3 moles of CuO are consumed.
Learn more about molarity here:
brainly.com/question/24305514
#SPJ10