I would expect fine salt to fully dissolve by the end of 45 minutes. Since the other types of salt are not fine and tiny, they would take longer to dissolve
Answer:
In a parallel circuit, current divides through resistors and current might be different depending upon the resistor and all resistors have the same potential difference. Therefore, if a parallel resistor was removed then the total resistance of the circuit will increase.
Answer:
- Question 19: the three are molecular compounds.
Explanation:
<em>Question 19.</em>
All of them are the combination of two kinds of different atoms in fixed proportions.
- C₂H₄: two carbon atoms per four hydrogen atoms
- HF: one hydrogen atom per one fluorine atom
- H₂O₂: two hydrogen atoms per two oxygent atoms
Thus, they all meet the definition of compund: a pure substance formed by two or more different elements with a definite composition.
Molecular compounds are formed by covalent bonds and ionic compounds are formed by ionic bonds.
Two non-metal elements, like H-F, C - C, C - H, H-O, H - H, and O - O will share electrons forming covalent bonds to complete their valence shell. Thus, the three compounds are molecular and not ionic.
<em>Question 20. </em>Formula of copper(II) sulfate hydrate with 36.0% water.
Copper(II) sulfate is CuSO₄. Its molar mass is 159.609g/mol
Water is H₂O. Its molar mass is 18.015g/mol
Calling x the number of water molecules in the hydrate, the percentage of water is:

From which we can solve for x:

Thus, there are 5 molecules of water per each unit of CuSO₄, and the formula is:
The mass percent lithium hydroxide in the mixture with potassium hydroxide, calculated from the equivalence point in the titration of HCl with the mixture, is 19.0%.
The mass percent of lithium hydroxide can be calculated with the following equation:
(1)
Where:
(2)
We need to find the mass of LiOH.
From the titration, we can find the number of moles of the mixture since the number of moles of the acid is equal to the number of moles of the bases at the equivalence point.



Since mol = m/M, where M: is the molar mass and m is the mass, we have:
(3)
Solving equation (2) for m_{KOH} and entering into equation (3), we can find the mass of LiOH:
Solving for
, we have:

Hence, the percent lithium hydroxide is (eq 1):
Therefore, the mass percent lithium hydroxide in the mixture is 19.0%.
Learn more about mass percent here:
I hope it helps you!