The third equation of free fall can be applied to determine the acceleration. So that Paola's acceleration during the flight is 39.80 m/
.
Acceleration is a quantity that has a direct relationship with velocity and also inversely proportional to the time taken. It is a vector quantity.
To determine Paola's acceleration, the third equation of free fall is appropriate.
i.e
=
± 2as
where: V is the final velocity, U is the initial velocity, a is the acceleration, and s is the distance covered.
From the given question, s = 20.1 cm (0.201 m), U = 4.0 m/s, V = 0.
So that since Poala flies against gravity, then we have:
=
- 2as
0 =
- 2(a x 0.201)
= 16 - 0.402a
0.402a = 16
a = 
= 39.801
a = 39.80 m/
Therefore Paola's acceleration is 39.80 m/
.
Visit: brainly.com/question/17493533
Answer:
-1486 KJ
Explanation:
The work done by an electric field on a charged body is:
W = ΔV * q
where ΔV = change in voltage
q = total charge
The total charge of Avogadro's number of electrons is:
6.0221409 * 10^(23) * -1.6023 * 10^(-19) = -9.65 * 10^(4)
The change in voltage, ΔV, is:
9.20 - (6.90) = 15.4
Therefore, the work done is:
W = -9.65 * 10^(4) * 15.4 = -1.486 * 10^6 J = -1486 KJ
The negative sign means that the motion of the electrons is opposite the electrostatic force.
Answer:
Exerxingtransforms the chemical energy in the food you eat into Kinetic Energy.
Therefore, the answer is A. Kinetic Energy
Answer:
d. 32.0 rad
Explanation:
The angular speed, denoted by ω can be calculated thus;
ω = θ /t
Where;
ω = angular speed in radians/sec
θ = angle in radians
t = time in seconds
∆ω = final ω - initial ω
ω = 12.00 rad/s - 4.00 rad/s
ω = 8.00 rad/s
Hence, using ω = θ/t
8.00 = θ/4
θ = 32.00rad
Option (E) is correct
Neither (they arrive together)
<u>Explanation:</u>
Neither of the cylinders gets to the bottom first, they both will arrive together. Every object can gain speed with time if it is pushed, it is called the acceleration of that object. It the acceleration that decides which object reaches the bottom first.
Acceleration = I / mr^2.
In the case of both the cylinders, the acceleration will be the same, with the same acceleration they will reach the bottom at the same time.