Answer:
Aluminium
Explanation:
When a body is immersed in a liquid partly or wholly it experiences an upward force which is called buoyant force.
The amount of buoyant force depends on the volume of body immersed, density of liquid and the value of acceleration due to gravity.
Here, the density of liquid is same in both the cases and g be the same. So, here the amount of buoyant force depends on the volume of body immersed.
As the density of lead is more than the density of aluminium, so the volume of aluminium is more than lead, as volume is equal to mass divided by density. So, the buoyant force acting on the aluminium is more than lead.
Answer:
The car starts moving in the positive direction at x = 0.2 seconds. Initially it moves very little, but it covers a greater distance with each time increment.
Explanation:
Answer: 2.49×10^-3 N/m
Explanation: The force per unit length that two wires exerts on each other is defined by the formula below
F/L = (u×i1×i2) / (2πr)
Where F/L = force per meter
u = permeability of free space = 1.256×10^-6 mkg/s^2A^2
i1 = current on first wire = 57A
i2 = current on second wire = 57 A
r = distance between both wires = 26cm = 0.26m
By substituting the parameters, we have that
Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26
= 4080.744×10^-6/ 1.634
= 4.080×10^-3 / 1.634
= 2.49×10^-3 N/m
Answer:
0.23 s
Explanation:
First of all, let's find the time constant of the circuit:

where
is the resistance
is the capacitance
Substituting,

The charge on a charging capacitor is given by
(1)
where
is the full charge
we want to find the time t at which the capacitor reaches 90% of the full charge, so the time t at which

Substituting this into eq.(1) we find

The work done is the loss of kinetic energy.
Loss of kinetic energy = m*(v1^2 - v2^2)/2 = 10 kg * [ (99m/s)^2 - (1m/s)^2]/2 = 49,000 J