D is the answer. A, B,C are absurd. Doing a little word right there.
Answer:
n = 4, l = 2
Explanation:
The number 4 in 4d is the principal quantum number (n).
The letter d in 4d tells us that we have a d orbital, as determined by the <em>secondary quantum number (l</em>).
The quantum number l tells us the shape of the orbital.
l = 0 s orbital
l = 1 p orbital
l = 2 d orbital
Answer:
It is less dense. It is also less dense than the oceanic crust.
Hope this helps and if it did, please mark brainliest!
Answer:
moles of CO2 can be produced from a reaction of 10.0 moles C2H6
Explanation:
In this reaction -
2 moles of C₂H6 produces four molecules of Carbon dioxide (CO2)
So 1 mole of C₂H6 will produce
moles of Carbon dioxide (CO2)
Thus, 10 moles of C₂H6 will produce
moles of Carbon dioxide (CO2)
We write DE = q+w, where DE is the internal energy change and q and w are heat and work, respectively.
(b)Under what conditions will the quantities q and w be negative numbers?
q is negative when heat flows from the system to the surroundings, and w is negative when the system does work on the surroundings.
As an aside: In applying the first law, do we need to measure the internal energy of a system? Explain.
The absolute internal energy of a system cannot be measured, at least in any practical sense. The internal energy encompasses the kinetic energy of all moving particles in the system, including subatomic particles, as well as the electrostatic potential energies between all these particles. We can measure the change in internal energy (DE) as the result of a chemical or physical change, but we cannot determine the absolute internal energy of either the initial or the final state. The first law allows us to calculate the change in internal energy during a transformation by calculating the heat and work exchanged between the system and its surroundings.