By stoichiometry and assume
that:
CxH2xOy + zO2 -> xCO2
+ xH2O
<span>
CO2: 9.48/44 = 0.215 mmol
H2O: 3.87/18 = 0.215 mmol
mass of C = 0.215 * 12 = 2.58 mg
mass of H = 0.215 * 2 * 1 = 0.43 mg
mass of O in ethylbutyrate = 4.17 - 2.58 - 0.43 = 1.11 mg
So C/O = 2.58/1.11 ≈ 3 </span>
<span>
Thus we have C3H6O</span>
<span> </span>
Answer:
The most common reason for alloying is to increase the strength of a metal. This requires that barriers to slip be distributed uniformly throughout the crystalline grains. On the finest scale, this is done by dissolving alloying agents in the metal matrix (a procedure known as solid solution hardening
Explanation:
hey why u search i have book that answer i got mark as brainlist please okkkkkk
Answer:
Mole fraction O₂= 0.43
Explanation:
Mole fraction is the moles of gas/ total moles.
Let's determine the moles of each:
Moles O₂ → 15.1 g / 16 g/mol = 0.94
Moles N₂ → 8.19 g / 14 g/mol = 0.013
Moles H₂ → 2.46 / 2 g/mol = 1.23
Total moles = 2.183
Mole fraction O₂= 0.94 / 2.183 → 0.43
Answer: 1:4.69
Explanation:
The ratio can be expressed as:
Ua/Ub= √(Mb/Ma)
Where Ua/Ub is the ratio of velocity of hydrogen to carbon dioxide and Ma is the molecular mass of hydrogen gas= 2
Mb is the molecular mass of CO2 = 44
Therefore
Ua/Ub= √(44/2)
Ua/Ub = 4.69
Therefore the ratio of velocity of hydrogen gas to carbon dioxide = 1:4.69
which implies hydogen is about 4.69 times faster than carbon dioxide.