Answer:
for 1st question the answer is 5th option.
for 2nd question the answer is 2nd option
hope it helps you mate
please mark me as brainliast
Answer:
Option ‘a’ is the cheapest for this house.
Explanation:
Cheapest method of heating must have least cost per kj of energy. So, convert all the energy in the same unit (say kj) and take select the cheapest method to heat the house.
Given:
Three methods are given to heat a particular house are as follows:
Method (a)
Through Gas, this gives energy of amount $1.33/therm.
Method (b)
Through electric resistance, this gives energy of amount $0.12/KWh.
Method (c)
Through oil, this gives energy of amount $2.30/gallon.
Calculation:
Step1
Change therm to kj in method ‘a’ as follows:

$/kj.
Step2
Change kWh to kj in method ‘b’ as follows:

$/kj.
Step3
Change kWh to kj in method ‘c’ as follows:

$/kj.
Thus, the method ‘a’ has least cost as compare to method b and c.
So, option ‘a’ is the cheapest for this house.
Answer:
Flow energy is defined as, flow energy is the energy needed to push fluids into control volume and it is the amount of work done required to push the entire fluid. It is also known as flow work. Flow energy is not the fundamental quantities like potential and kinetic energy.
Fluid at state of rest do not possess any flow energy. It is mostly converted into internal energy as, rising in the fluid temperature.
Answer:

Explanation:
We are given:
m = 1.06Kg

T = 22kj
Therefore we need to find coefficient performance or the cycle


= 5
For the amount of heat absorbed:

= 5 × 22 = 110KJ
For the amount of heat rejected:

= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= 
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
;

= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at
= 12.4°c we have 442KPa
Answer:
As we know that every molecule is attached by a strong force .The force required to disassemble the atoms is know as atomic binding force or we can say that the force required to disassemble the electron from atoms is known as binding force.On the other hand the energy require to doing this is known as atomic binding energy.
If the binding force is high then it will become difficult to disassemble thermally as well as mechanically.So we can say that it have direct relationship with materials strength and thermal stability.