Answer:
Detailed solution is given in the attached diagram
Answer:
S = 5.7209 M
Explanation:
Given data:
B = 20.1 m
conductivity ( K ) = 14.9 m/day
Storativity ( s ) = 0.0051
1 gpm = 5.451 m^3/day
calculate the Transmissibility ( T ) = K * B
= 14.9 * 20.1 = 299.5 m^2/day
Note :
t = 1
U = ( r^2* S ) / (4*T*<em> t </em>)
= ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4
Applying the thesis method
W(u) = -0.5772 - In(U)
= 7.9
next we calculate the pumping rate from well ( Q ) in m^3/day
= 500 * 5.451 m^3 /day
= 2725.5 m^3 /day
Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping
S = 
where : Q = 2725.5
T = 299.5
W(u) = 7.9
substitute the given values into equation above
S = 5.7209 M
Answer:
a)R= sqrt( wt³/12wt)
b)R=sqrt(tw³/12wt)
c)R= sqrt ( wt³/12xcos45xwt)
Explanation:
Thickness = t
Width = w
Length od diagonal =sqrt (t² +w²)
Area of raectangle = A= tW
Radius of gyration= r= sqrt( I/A)
a)
Moment of inertia in the direction of thickness I = w t³/12
R= sqrt( wt³/12wt)
b)
Moment of inertia in the direction of width I = t w³/12
R=sqrt(tw³/12wt)
c)
Moment of inertia in the direction of diagonal I= (w t³/12)cos 45=( wt³/12)x 1/sqrt (2)
R= sqrt ( wt³/12xcos45xwt)
Answer:
The mechanical gauge would be the one for the job
Explanation:
Answer:

Explanation:
The first thing we will do is convert the units. Miles per hour to meters per second.


Performing the operations

Now, we will use the acceleration formula

Where v = speed and t = time
Substituting the values of 
