Water has the special type of attraction called Hydrogen bonding. The bonds between the Hydrogen and the Oxygen in each water molecule make a super dipole because the Oxygen atom is way more electronegative than the hydrogen atom. These OH bonds can then be attracted to other H2O molecules. If you have ever poured water up to the brim and there is little bit of water that is poking above the top, hydrogen bonding keeps those water molecules from spilling
It will take less 1.8 seconds for the mass of a sample of magnesium-20 to decay from 65.6 micrograms to 8.20 micrograms.
<h3>What is Half-Life of radioactive a radioactive substance?</h3>
The half-life of a radioactive element is the time for half the amount of a sample of the substance to decay.
After 0.6 seconds 31.25 remains
After 1.2 seconds, 15.625 remains
After 1.8 seconds, 7.9 micrograms remains.
In conclusion, it will take less 1.8 seconds for the sample to decay to 8.20 micrograms.
Learn more about Half-Life at: brainly.com/question/2320811
#SPJ1
Answer:
1.40 M [OH⁻]
Explanation:
This compound dissociates into 3 ions, but since we are asked about [OH⁻], it's only 2. Therefore, multiply the molarity of the solution by the number of ions that [OH⁻] dissociates into:
2 × 0.70 M = 1.40 M
Hope this helps! Sorry that you got a link. Those are getting really annoying
Answer:
XY4Z2 ----- square planar
XY5Z ------- square pyramidal
XY2Z----- bent < 120°
XY2Z3 ----- Linear
XY4Z ---- see saw
XY2Z2 ----- bent <109°
XY3Z2 ----- T shaped
XY3Z ----- Trigonal pyramidal
Explanation:
The valence shell electron pair repulsion theory ( VSEPR) gives the description of molecular geometry based on the relative number of electron pairs present in the molecule.
However, electron pairs repel each other, the repulsion between two lone pairs is greater than the repulsion between a lone pair and a bond pair which is also greater than the repulsion between two lone pairs.
The presence of lone pairs distort the bond angle and molecular geometry from the expected geometry based on VSEPR theory. Hence, in the presence of lone pairs of electron, the observed molecular geometry may be different from that predicted on the basis of the VSEPR theory, the bond angles also differ slightly or widely depending on the number of lone pairs present.
All the molecules in the question possess lone pairs, the number of electron pairs do not correspond to the observed molecular shape or geometry due to lone pair repulsion. Usually, the molecular geometry deals more with the arrangement of bonded atoms in the molecule.
The Lewis structure the student drew is incorrect. The total number of electrons in bonds and lone pairs is equal to the total number of valence electrons available, then a valid Lewis structure is produced.
The correct structure is the following:
The structure that was drawn by the student was incorrect because the total number of electrons around Oxygen were incorrect, there were 6 instead of 8, which was against the octet rule. The correct structure should have 8 electrons around each atom.