Now that we have a background in the Lewis electron dot structure we can use it to locate the the valence electrons of the center atom. The valence-shell electron-pair repulsion (VSEPR) theory states that electron pairs repel each other whether or not they are in bond pairs or in lone pairs. Thus, electron pairs will spread themselves as far from each other as possible to minimize repulsion. VSEPR focuses not only on electron pairs, but it also focus on electron groups as a whole. An electron group can be an electron pair, a lone pair, a single unpaired electron, a double bond or a triple bond on the center atom. Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule.
The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction. Thus, the molecule's shape reflects its equilibrium state in which it has the lowest possible energy in the system. Although VSEPR theory predicts the distribution of the electrons, we have to take in consideration of the actual determinant of the molecular shape. We separate this into two categories, the electron-group geometry and the molecular geometry.
Answer: Homogeneous mixture
Explanation:
Homogeneous mixtures are those mixtures in which the dispersed phase is uniformly distributed throughout the dispersion medium. The dispersed phase has uniform composition throughout the dispersion medium and thus there is no physical boundary between the dispersed phase and the dispersion medium. Example: salt in water
Heterogeneous mixtures are those mixtures in which the dispersed phase is not uniformly distributed throughout the dispersion medium. The dispersed phase does not has uniform composition throughout the dispersion medium and thus there is a distinct physical boundary between the dispersed phase and the dispersion medium. Example: Sand in water
Answer:
please I think the answer is A.
please show appreciation if it helps
and sorry if it doesn't help.
Answer:
Ammonia (NH3)
Explanation:
its an ionic compound where N nitrogen is bonded to covalent molecules