The amount of 1,3-dimethyl urea produced would be 32,458 grams or 32.458 kg while that of carbon dioxide would be 16,214 grams of 16.214 kg
<h3>Stoichiometric problem</h3>
From the equation of the reaction, the mole ratio of methyl isocyanate with the products is 2:1 respectively.
Mole of 42,000 kg of methyl isocyanate = 42000/57 = 736.84 moles
Equivalent mole of 1,3-dimethyl urea = 736.84/2 =368.42 moles
Equivaent mole of carbon dioxide = 736.84/2 =368.42moles
Mass of 368.42 moles 1,3-dimethyl urea = 368.42 x 88.1 = 32,458 grams or 32.458 kg
Mass of 368.42 moles of carbon dioxide = 368.42 x 44.01 = 16,214 grams of 16.214 kg
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
Use ideal gas law PV=nRT
Convert 5.00 atm to kPa since units must be relative to gas constant (r).
To do this multiply 5 by 101.03 (1 atm=101.3kPa)
Now plug in (506.5kPa)(10.0L)=n(8.31 L•atm/mol•K)(373K)
Solve for n (moles) to get approximately 1.634 mol. Now use dimensional analysis (1.634mol/1)(22.4L/1mol) = 36.6L
66 mph
Explanation:
Average speed is the rate of change of distance with time:
Average speed = 
Given parameters:
Starting point = 88mile marker
End of journey = 121mile marker
time = 30minutes = 0.5hr(60min = 1hr)
Solution:
The distance covered in this journey:
Distance = End of journey - starting point = 121 mile - 88 mile = 33mile
Average speed = 
= 66mph
The average speed of Sara's mum is 66mph
Learn more:
Average speed brainly.com/question/8893949
#learnwithBrainly
Answer:
The correct answer is: 2M Al3+(aq) and 6 M NO3-(aq)
Explanation:
Step 1: Data given
2.0 M Al(NO3)3
Step 2:
Al(NO3)3 in water will dissociate as following:
Al(NO3)3 → Al^3+ + 3NO3^-
For 1 mol of Al(NO3)3 we will have 1 mol of Al^3+ and 3 moles of NO3^-
We know that the molarity of Al(NO3)3 = 2.0 M, this means 2.0 mol/ L
The mol ratio Al(NO3)3 and Al^3+ is 1:1 so the molarity of Al^3+ is<u> 2.0 M</u>
The mol ratio Al(NO3)3 and NO3^- is 1:3 so the molarity of NO3^- is<u> 6.0M</u>
The correct answer is: 2M Al3+(aq) and 6 M NO3-(aq)
Organic molecule. In particular, a carbohydrate.