Hello,
Your questions states:
During a change of state, the temperature of a substance _____?
In which you gave us some choices:
A. decreases if the arrangement of particles in the substance changes.
B. remains constant until the change of state is complete.
C. increases if the kinetic energy of the particles in the substance increases.
D. increases during melting and vaporization and decreases during freezing and condensation.
Your answer would be:
B. remains constant until the change of state is complete.
Your explanation/Reasoning:
It absorbs the energy, then after the phase changes it then increases the temperature all over again.
Have a nice day:)
Hope this helps!
~Rendorforestmusic
Explanation:
Molar mass of
= 39.1 + 35.5 + 3(16.0) = 122.6 g
Molar mass of KCl = 39.1 + 35.5 = 74.6 g
Molar mass of
= 32.0 g
According to the equation, 2 moles of
reacts to give 3 moles of oxygen.
Therefore, 2 (122.6) = 245.2 g of
will give 3 (32.0) = 96.0 g of oxygen. Thus, 245.2 g of
gives 96.0 g of oxygen.
(a) Calculate the amount of oxygen given by 2.72 g of
as follows.
of
(b) Calculate the amount of oxygen given by 0.361 g of
as follows.
of
c) Calculate the amount of oxygen given by 83.6 kg
as follows.
of 
Convert kg into grams as follows.
= 32731 g of 
(d) Calculate the amount of oxygen given by 22.5 mg of
as follows.

Convert mg into grams as follows.
of 
Answer:
Fluorine has seven electrons in 2p-subshell whereas chlorine has seven electrons in its 3p-subshell. 3p-subshell is relatively larger than 2p-subshell. Therefore, repulsion among the electrons will be more in the 2p-shell of fluorine than 3p-subshell in chlorine. Due to the smaller size and thus, the greater electron-electron repulsions, fluorine will not accept an incoming electron with the same as chlorine.
You can find an element's amount of energy level by determining their place on the periodic table. An element's amount of energy levels are represented by which period/ row they are in. For example, Calcium has 4 energy levels. I know this because it is in the fourth period on the table.
Hope this helps!