Answer:
0.574moles
Explanation:
Using the general gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (Kelvin)
According to the information provided in the question;
- Volume (V) = 12400mL = 12400/1000 = 12.4L
- Pressure (P) = 890mmHg = 890/760 = 1.17atm
- Temperature (T) = 35°C = 35 + 273 = 308K
Hence, using PV = nRT
n = PV/RT
n = 1.17 × 12.4 ÷ 0.0821 × 308
n = 14.508 ÷ 25.287
n = 0.574moles
Therefore, the number of moles of argon gas in the cylinder is 0.574moles
Answer:
4,1,5,3,2 (from left to right)
Answer:
1. First one is true : as per periodic table down the group , the elements has increasing order of shell & with that the London dispersion forces brings the inter-molecules close together and bromine converted into liquid .
2. second one is False because carbon-carbon bonds are not weak bonds they form mutual covalent bonds which are stronger bonds and cannot be easily disrupted .
3. A single carbon atom has the valency of 4 so it can be bonded with four hydrogen atom at the same time .
Explanation:
Answer:

Explanation:
Hello!
In this case, since the percent water is computed by dividing the amount of water by the total mass of the hydrate; we infer we first need the molar mass of water and that of the hydrate as shown below:

Thus, the percent water is:

So we plug in to obtain:

Best regards!
I do not see any mistakes so I think you’re good!