The work done by the electric field in moving a charge is the negative of the potential energy difference between the two locations, which is the product between the magnitude of the charge q and the potential difference

:

The proton charge is

, and the two locations have potential of

and

, therefore the work is

The product in a chemical reaction is written on the Right side of the arrow, so
the product formed here in given reaction is :
Answer: Well the answer is KE = 5.625E-7 i just don't know the units for it...
Hope this helps....... Stay safe and have a Merry Christmas!!!!!!!!!! :D
Answer:
B)
The magnitude of induced emf in the conducting loop is 0.99 mV.
Explanation:
Rate of increase in magnetic field per unit time = 0.090 T/s
Area of the conducting loop = 110 cm^2 = 0.0110 m^2
Electromagnetic induction is the production of an emf or voltage in a coil of wire due to a changing magnetic field through the coil.
Induced e.m.f is given as:
EMF = (-N*change in magnetic field/time)*Area
EMF = rate of change of magnetic field per unit time * Area
EMF = 0.090 * 0.0110
EMF = 0.00099 V
EMF = 0.99 mV
Answer:
3.39 mins.
10m/s multiplied by 6 equals to 60 seconds or 1 minute