Answer: Part(a)=0.041 secs, Part(b)=0.041 secs
Explanation: Firstly we assume that only the gravitational acceleration is acting on the basket ball player i.e. there is no air friction
now we know that
a=-9.81 m/s^2 ( negative because it is pulling the player downwards)
we also know that
s=76 cm= 0.76 m ( maximum s)
using kinetic equation

where v is final velocity which is zero at max height and u is it initial
hence


now we can find time in the 15 cm ascent


using quadratic formula

t=0.0409 sec
the answer for the part b will be the same
To find the answer for the part b we can find the velocity at 15 cm height similarly using

where s=0.76-0.15
as the player has traveled the above distance to reach 15cm to the bottom


when the player reaches the bottom it has the same velocity with which it started which is 3.861
hence the time required to reach the bottom 15cm is

t=0.0409
Answer:
0.4
Explanation:
F-Fr=ma where F is applied force, Fr is friction, m is mass and a is acceleration.
Since the mass is moving with a constant velocity, there's no acceleration hence
where N is the weight of object and \mu is coefficient of kinetic friction.
the subject

Substituting F for 8 N and N for 20 N

Therefore, coefficient of kinetic friction is 0.4
Answer:
Explanation:You can download the anly/3fcEdSxs
wer here. Link below!
bit.
In your question where the ask is to calculate the charge that the small sphere carries which is the mass of it is 441g moving at an acceleration of 13m/s^2 nad having and electric field of 5N/C. So the formula in getting the charge is mutliply the mass and the quotients of Acceleration and the Electric Field so the answer is 1,146.6
Multiply it by a fraction equal to ' 1 ', like this:
(14.8 cm) x (1 meter/100 cm) = 14.8/100 = 0.148 meter