From Gauss law we have
E = 2kx/r where x=linear charge density, r=distance from the wire=1.7 m
k =9 x 10^9 SI units.....we have been given E = 3.8 x 10^4 N/C ..... so plugging numbers we get
x = 3.59 x 10^ -6 C/ M (coulomb per meter) =linear charge density
The correct answer is
<span>
force per unit charge.
In fact, the electric field strength is defined as the electric force per unit charge experienced by a positive test charge located in the electric field. In formula:
</span>

where
E is the electric field strength
F is the electric force experienced by the charge
q is the positive test charge.
Idk can u say it in a another way
Answer:
1. Dry Beans - 591.75 kg/m^3
2. Flour - 593 kg/m^3
3. Wax - 900 kg/m^3
4. Wet sand - 2039 kg/m^3
5. Chalk - 2499 kg/m^3
6. Talcum Powder - 2776 kg/m^3
7. Copper - 8960 kg/m^3
Explanation:
Make sure your units are the same
The trains take <u>57.4 s</u> to pass each other.
Two trains A and B move towards each other. Let A move along the positive x axis and B along the negative x axis.
therefore,

The relative velocity of the train A with respect to B is given by,

If the train B is assumed to be at rest, the train A would appear to move towards it with a speed of 170 km/h.
The trains are a distance d = 2.71 km apart.
Since speed is the distance traveled per unit time, the time taken by the trains to cross each other is given by,

Substitute 2.71 km for d and 170 km/h for 

Express the time in seconds.

Thus, the trains cross each other in <u>57.4 s</u>.