Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.
There are no appropriate examples in the list you provided with your question.
Examples of radiation:
... sunshine to tan your skin
... radio energy to bring you the news
... X-ray to check your teeth
... microwave to heat up the meatloaf
... flashlight to see where you're going
... RF energy to get an MRI of your knee
... infrared radiation from the campfire to warm your tootsies
... UHF radio waves to make a call or check Facebook with your smartphone
The appropriate response is the rotation. There are most likely no less than 100 billion planets in the Milky Way. The Solar System is situated inside the circle, around 26,000 light-years from the Galactic Center, on the inward edge of one of the winding molded centralizations of gas and tidies called the Orion Arm.
Answer:
The friction force is 250 N
Explanation:
The desk is moving at constant velocity. This means that its acceleration is zero: a = 0. Newton's second law states that the resultant of the forces acting on the desk is equal to the product between mass (m) and acceleration (a):

In this case, we know that the acceleration is zero: a = 0, so also the resultant of the forces must be zero:
(1)
We are only interested in the forces acting along the horizontal direction, since it is the direction of motion. There are two forces acting in this direction:
- the pull, forward, F = 250 N
- the friction force, backward, 
Given (1), we have

So the force of friction must be equal to the pull:

More energy is used in creating a louder sound from the mouth.
<h3>What must you do to produce a louder sound?</h3>
We use more energy in order to produce a louder sound because energy is the thing that helps in the formation of loud sound. Loudness is dependent on the energy that creates loud sound in the mouth. More energy we apply, more loud sound will produce. Energy is the main factor which gives us a loud sound in each and every instruments. Without, we can't imagine loud sound.
So we can conclude that more energy is used in creating a louder sound from the mouth.
Learn more about sound here: brainly.com/question/1199084
#SPJ1