Benzene is more stable because it contains a ring and therefore an aromatic compound. On the other hand, 1,3,5-hexatriene, as a straight-chain alkene, is aliphatic. Aromatic compounds in general are more stable than their aliphatic counterparts because pi electrons are part of a conjugated system, meaning they are "shared" amongst all double-bonded atoms.
Excess reactant : Na
NaCl produced : = 16.497 g
<h3>Further explanation</h3>
Given
Reaction(balanced)
2Na + Cl₂⇒ 2NaCl
20 g Na
10 g Cl₂
Required
Excess reactant
NaCl produced
Solution
mol Na(Ar = 23 g/mol) :
= 20 : 23 = 0.87
mol Cl₂(MW=71 g/mol):
= 10 : 71 g/mol = 0.141
mol : coefficient :
Na = 0.87 : 2 = 0.435
Cl₂ = 0.141 : 1 = 0.141
Limiting reactant : Cl₂(smaller ratio)
Excess reactant : Na
Mol NaCl based on mol Cl₂, so mol NaCl :
= 2/1 x mol Cl₂
= 2/1 x 0.141
= 0.282
Mass NaCl :
= 0.282 x 58.5 g/mol
= 16.497 g
Answer:
The jewelry is 2896.54_Kg/m^3 less dense than pure silver
Explanation:
Density of jewellery = (mass of jewellery) ÷ (volume of jewellery)
=3.25g ÷ 0.428mL = 0.00325Kg÷0.000000428m^3 = 7583.46Kg/m^3
The density of silver is 10490_Kg/m^3 which is (10490 - 7583.46) 2896.54_Kg/m^3 more dense than the jewellery
The density of Silver [Ag]
The weight of Silver per cubic centimeter is 10.49 grams or the weight of silver per cubic meter is 10490 kilograms, that is the density of silver is 10490 kg/m³; at 20°C (68°F or 293.15K) at a pressure of one atmospheres.
For the first part, use the question M=mol/vol (liters)
To do this, you have the given 1.6 M solution
divide the 360g by the molar mass of ethanol (44.07) to get moles
360/44.07=8.16 mol
so
1.6M = 8.16 mol/x vol
volume: 5.1 Liters
Answer:
The law of conservation of mass states that in a closed system, mass is neither created nor destroyed during a chemical or physical reaction. The law of conservation of mass is applied whenever you balance a chemical equation.
Explanation:
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
It is applicable in a chemical when the the mass of the products in a chemical reaction is equal to the mass of the reactants.
But it is not applicable in a nuclear fusion as some of the mass is generated as energy.