Answer:
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Explanation:
<u>Step 1</u>: Data given
Mass of the metal = 21 grams
Volume of water = 100 mL
⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams
Initial temperature of metal = 122.5 °C
Initial temperature of water = 17°C
Final temperature of water and the metal = 19 °C
Heat capacity of water = 4.184 J/g°C
<u />
<u>Step 2: </u>Calculate the specific heat capacity
Heat lost by the metal = heat won by water
Qmetal = -Qwater
Q = m*c*ΔT
m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)
21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)
-2173.5 *c(metal) = -836.8
c(metal) = 0.385 J/g°C
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Answer:
Explanation:
Take a random sample of nuts from the jar. Let's take two handfuls, after shaking the jar and mixing the nuts thoroughly. Separate the nuts into almonds and cashews. Count each pile, then do the following calculation (these numbers are random, for example only).
<u> Count</u> <u>Percentage %</u>
Almonds 38 (38)/(87)x100
Cashews <u> 49</u> 49/87x100
87 87/87 = 100%
Ratio of Almonds to Cashews: <u>38/49</u>
Answer:
Según el científico inglés John Dalton, los átomos son esferas elásticas e indivisibles. Así, según él, el átomo es el bloque de construcción más pequeño de la materia. Es homogéneo e indivisible, y todos los átomos de un elemento químico dado son idénticos (es decir, tienen el mismo conjunto de propiedades).
Aunque se descubrió a finales del siglo XIX que los átomos están hechos de partículas aún más pequeñas y pueden sufrir transformaciones, y que los átomos de un elemento dado pueden diferir ligeramente entre sí (isótopos), la teoría de Dalton fue la base para el desarrollo de la tecnología química moderna.
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Vegetable soup is a mixture.