Answer:
Most interstellar clouds are much bigger than our solar system.
Explanation:
An interstellar cloud refers:
- It is generally an accumulation of gas, plasma, and dust in our and other galaxies.
- It is basically a denser-than-average region of the interstellar medium (ISM).
Interstellar clouds can be large up to 106 solar masses
It is also often said to be the most massive entities in the galaxy.
Hence
we can say about Interstellar clouds,
They are much bigger than our solar system.
learn more about interstellar clouds here:
<u>brainly.com/question/14726563</u>
<u />
#SPJ4
I think that the answer is friction
Answer: To increase the rigidity of the system you could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.
Explanation:
When a rule is displaced from its vertical position, it oscillates back and forth because of the restoring force opposing the displacement. That is, when the rule is on the left there is a force to the right.
By holding a ruler with one hand and deforming it with the other a force is generated in the opposite direction which is known as the restoring force. The restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. The momentum gained causes the ruler to move to the right leading to opposite deformation. This moves the ruler again to the left. The whole process is repeated until dissipative forces reduce the motion causing the ruler to come to rest.
The relationship between restoring force and displacement was described by Hooke's law. This states that displacement or deformation is directly proportional to the deforming force applied.
F= -kx, where,
F= restoring force
x= displacement or deformation
k= constant related to the rigidity of the system.
Therefore, the larger the force constant, the greater the restoring force, and the stiffer the system.
The formula for acceleration is a = F/m; Where: F = force; m = mass
Given: F = .6n; m = .4kg; a = ?
a = F/m
= .6/.4
= 1.5
Therefore, the acceleration of the plate is 1.5 m/s^2