Answer:
Mass of Jupiter = 4.173×10^15kg
Explanation:
Using Kepler's 3rd law, it states that the orbital period T is related to the distance,r as:
T^2 = GM/4 pi × r^3
Where G = universal gravitational constant
r = radius
M = masd of jupiter
Rearranging the formular to make M the subject of formular
T^2 × 4 pi = G M × r^3
(T^2 × 4 pi) / (G× r^3) = M
(1.24^2 × 4 × 3.142) /(6.672×10^-11)(4.11×10^8)^3
M = 19.32 /6.672×10^-11)(4.11×10^8)^3
M = 19.32 / 4.63 ×10^15
M = 4.173×10^15kg
Answer:
20m
Explanation:
Pressure = pgh
p = density of water 1000
kg/m^3
g = acceleration due to gravity 9.81 m/s^2
h is the depth of water
Pressure = 201 kPa = 201 x 10^3 Pa
201 x 10^3 = 1000 x 9.81 x h
201 x 10^3 = 9810h
h = 20.49 m
Approximately 20 m
Answer:

Explanation:
The planet can be thought as a solid sphere rotating around its axis. The moment of inertia of a solid sphere rotating arount the axis is

where
M is the mass
R is the radius
For the planet in the problem, we have


Solving the equation for R, we find the radius of the planet:

C according to my calculations