1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
3 years ago
9

At this radius, what is the magnitude of the net force that maintains circular motion exerted on the pilot by the seat belts, th

e friction against the seat, and so forth? Answer in units of N.
Physics
1 answer:
Ainat [17]3 years ago
4 0

Answer:

Fc=5253 N

Explanation:

Answer:

Fc=5253 N

Explanation:

sequel to the question given, this question would have taken precedence:

"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."

so we derive centripetal acceleration first

ac (centripetal acceleration) = v^2/r

make r the subject of the equation

r= v^2/ac

 ac is 6.23*g which is 9.81

v is 101m/s

substituing the parameters into the equation, to get the radius

(101^2)/(6.23*9.81) = 167m

Now for part

( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.

he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.

Fc (Centripetal Force) = m*v^2/r  

So (86kg* 101^2)/(167) =

Fc=5253 N

You might be interested in
A student on her way to school walks eastward in a straight line 20.0 meters towards the bus stop, but realizes she dropped her
larisa [96]

Answer:

Total displacement will be 47 meter

Total distance will be 83 meters

Explanation:

We have given that first the student go eastward towards bus stop 20 meters

But he realizes that she dropped his physics notebook and so h=she turns back along the same way up to 18 meters

So displacement = 20-18 = 2 meters

And he travel 45 meters in east along the bus stop so total displacement = 45+2 = 47 meters

Total distance traveled by the student = 20+18+45 = 83 meters  

3 0
3 years ago
If 5 mm of rain falls in a 100 m2 field, what volume of rain, in m3, fell in the field?
Nina [5.8K]

The volume of rain that fells in the field is simply given by the area of the field, which is

A=100 mm^2

multiplied by the height of rain that fell, which is

h=5.0 mm

Therefore, the volume is

V=hA=(5 mm)(100 mm^2)=500 mm^3

7 0
3 years ago
A 2-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to h
timofeeve [1]

To develop this problem it is necessary to apply the concepts given in the balance of forces for the tangential force and the centripetal force. An easy way to detail this problem is through a free body diagram that describes the behavior of the body and the forces to which it is subject.

PART A) Normal Force.

F_n = \frac{mv^2}{r}

N+mgcos\theta = \frac{mv^2}{r}

Here,

Normal reaction of the ring is N and velocity of the ring is v

N+mgcos\theta = \frac{mv^2}{r}

N+Wcos\theta = \frac{W}{g} (\frac{v^2}{r})

N+2cos30\° = \frac{2}{32.2}*\frac{10^2}{2}

N = 1.374lb

PART B) Acceleration

F_t = ma_t

-mgsin\theta = ma_t

-W sin\theta = \frac{W}{g} a_t

-2Sin30\° = (\frac{2}{32.2})a_t

a_T = -16.10ft/s^2

Negative symbol indicates deceleration.

<em>NOTE: For the problem, the graph in which the turning radius and the angle of suspension was specified was not supplied. A graphic that matches the description given by the problem is attached.</em>

8 0
3 years ago
An object dropped on Planet P falls 144 m in 6 seconds. What is the gravitational acceleration of Planet P ? Gravitational accel
Tju [1.3M]

Answer:

The gravitational acceleration of the planet is, g = 8 m/s²

Explanation:

Given data,

The distance the object falls, s = 144 m

The time taken by the object is, t = 6 s

Using the III equations of motion

                  S = ut + ½ gt²

∴                 g = 2S/t²

Substituting the given values,

                   g = 2 x 144 /6²

                      = 8 m/s²

Hence, the gravitational acceleration of the planet is, g = 8 m/s²

7 0
3 years ago
What is the momentum of and 200 kg car traveling south at 22 m/sec?
motikmotik
The momentum of the car is 4.4x10^3 kg•m/sec
5 0
3 years ago
Other questions:
  • Which BEST describes the physical properties of the Earth’s core?
    13·1 answer
  • What are the different isotopes
    6·1 answer
  • Why did Hubble's data change our view of the universe?
    7·1 answer
  • You throw a football straight up. Air resistance can be neglected. (a) When the football is 4.00 m above where it left your hand
    9·1 answer
  • If the torque required to loosen a nut on a wheel has a magnitude of 40.0 N·m and the force exerted by a mechanic is 133 N, how
    13·1 answer
  • Write down the formula of expansion
    14·1 answer
  • um can someone please help me I'm really stuck on this question and an explanation would be nice thank you
    9·1 answer
  • Plsss help I will mark brainlist
    15·2 answers
  • Which of the following are likely to form an ionic bond
    10·2 answers
  • What important component is still scarce for American manufacturers, which had 40 days' worth before the pandemic but only had a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!