Answer with Explanation:
We are given that
Electric field vector=
Magnetic field vector=
We have to find the direction of propagation of the wave.
We know that
The direction of propagation of wave=
The direction of propagation of wave=
Because (
)
The wave propagate in -z direction.
Therefore, the component of the vector is (0,0,-1).
Hence, the direction of the propagation of wave is - z direction and component of direction of propagation vector is (0,0,-1).
The nail has become a temporary magnet, while the
bar magnet remains a permanent magnet.
Answer:
7.59Ns
Explanation:
Given parameters:
Force = 1360N
Time of contact = 5.85 x 10⁻³s
Unknown:
Impulse = ?
Solution:
The impulse of the ball is given as:
Impulse = Force x time
Impulse = 1360 x 5.85 x 10⁻³ = 7.59Ns
<h2>Answer: 12.24m/s</h2>
According to <u>kinematics</u> this situation is described as a uniformly accelerated rectilinear motion. This means the acceleration while the car is in motion is constant.
Now, among the equations related to this type of motion we have the following that relates the velocity with the acceleration and the distance traveled:
(1)
Where:
is the Final Velocity of the car. We are told "the car comes to a stop after travelling", this means it is 0.
is the Initial Velocity, the value we want to find
is the constant acceleration of the car (the negative sign means the car is decelerating)
is the distance traveled by the car
Now, let's substitute the known values in equation (1) and find
:
(2)
(3)
Multiplying by -1 on both sides of the equation:
(4)
(5)
Finally:
>>>This is the Initial velocity of the car
<u>Answer</u>:
The greatest possible acceleration of the car is 
<u>Explanation</u>:



-------------(1)

----------------(2)
Solving the equation (1) and(2)








Next lets assume that the front wheels contact with the ground N_A = 0














Choosing the critical case


