Answer:
c. 1.11 m/s down
Explanation:
Momentum is conserved.
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Assuming the balloon and projectile are originally at rest:
(90 kg) (0 m/s) + (10 kg) (0 m/s) = (90 kg) v + (10 kg) (10 m/s)
0 kg m/s = (90 kg) v + 100 kg m/s
v = -1.11 m/s
It would take the bicyclist 9 seconds to move 36m.
According to Archimedes Principle, Buoyant Force is equivalent to the displaced<span> amount of </span><span>fluid, So, Larger the amount of water displaced, more the Buoyant force will be.
In short, Object 3 would have the largest Buoyant Force
Hope this helps!</span>
Answer : Tension in the line = 936.7 N
Explanation :
It is given that,
Mass of student, m = 65 kg
The angle between slackline and horizontal, 
The two forces that acts are :
(i) Tension
(ii) Weight
So, from the figure it is clear that :




Hence, this is the required solution.
The distance between the two charges is 
Explanation:
The electrostatic force between two charged objects is given by Coulomb's law:

where:
is the Coulomb's constant
are the charges of the two objects
r is the separation between the two charges
In this problem, we are given the following:



Therefore, we can rearrange the equation to solve for r, the distance between the two charges:

Learn more about electrostatic force:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly