Answer:
B
Explanation:
F = ma , a = F/m
a1 = F/10 and a2 = F/4
Since Force is constant, a2 will we greater than a1
Answer:
V = 331.59m/s
Explanation:
First we need to calculate the time taken for the shell fire to hit the ground using the equation of motion.
S = ut + 1/2at²
Given height of the cliff S = 80m
initial velocity u = 0m/s²
a = g = 9.81m/s²
Substitute
80 = 0+1/2(9.81)t²
80 = 4.905t²
t² = 80/4.905
t² = 16.31
t = √16.31
t = 4.04s
Next is to get the vertical velocity
Vy = u + gt
Vy = 0+(9.81)(4.04)
Vy = 39.6324
Also calculate the horizontal velocity
Vx = 1330/4.04
Vx = 329.21m/s
Find the magnitude of the velocity to calculate speed of the shell as it hits the ground.
V² = Vx²+Vy²
V² = 329.21²+39.63²
V² = 329.21²+39.63²
V² = 108,379.2241+1,570.5369
V² = 109,949.761
V = √ 109,949.761
V = 331.59m/s
Hence the speed of the shell as it hits the ground is 331.59m/s
The statement that is true is a. the large bran muffin contains more heat energy. This statement holds true because of the equation E=mc2. E= Energy, m=mass and c=the speed of light. Although both muffins are at room temperature, the larger will theoretically have more heat energy because it has more mass.
Answer:
Roughly three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron. The Sun is a G-type main-sequence star (G2V) based on its spectral class.
Explanation:
Answer:
Special metal hangers or stirrups called joist hangers are used when joist must be flush with the bottom of the girder or beam.
Explanation:
- A joist hanger also known as a beam hanger is a mechanical device which is used to fasten joists and rafters.
- The rafters are the carried members to beams and headers are the carrying members.
Thus, special metal hangers or stirrups called joist hangers are used when joist must be flush with the bottom of the girder or beam.
Learn more about construction here:
brainly.com/question/14428327
#SPJ4