The magnetic force acting on the proton is

where
q is the proton charge
v is its speed
B is the intensity of the magnetic field

is the angle between the direction of v and B; since the proton is moving perpendicular to the magnetic field,

and

, so the force becomes

this force provides the centripetal force that keeps the proton in circular motion:

where the term on the left is the centripetal force, with
m being the mass of the proton
r the radius of its orbit
Re-arranging the previous equation, we can find the radius of the proton's orbit:

And now we can calculate the centripetal acceleration of the proton, which is given by
Answer:
P = mgh/t = 61(9.8)(0.32)/1.8 = 106.275555... ≈ 110 W
Explanation:
Power is the rate of doing work.
The work changes her potential energy.
Answer:
23.086 mile/h
Explanation:
Given,
Distance Tyson Gay run = 100 m
time of run, t = 9.69 s
average speed of the in mph = ?
Speed of the Gay = 

v = 10.32 m/s
1 m = 3.281 ft
10.32 m = 33.86 ft
1 mile = 5280 ft
1 ft = 1.8939 x 10⁻⁴ mile
33.86 ft/s = 6.413 x 10⁻³ miles/s
Speed of Tyson in mile/hr = 6.413 x 10⁻³ x 3600
= 23.086 mile/h
Hence, speed of Tyson Gay's in mile/ hr is equal to 23.086 mph.
it has a rocky core so the gravity from that compacts the gases extremly tight
Answer:
A) 0.50 mV
Explanation:
In this problem, we can think the wings of the bird as a metal rod moving across a magnetic field. So, and emf will be induced into the wings of the bird, according to the formula:

where
is the strength of the magnetic field
v = 13 m/s is the speed of the bird
L = 1.2 m is the wingspan of the bird
is the angle between the direction of motion and the direction of the magnetic field
Substituting numbers into the formula, we find
