Answer:
the acceleration of the rocket is: a=vemΔmΔt−g a = v e m Δ m Δ t − g .
Explanation:
I answered this before.
hope this helps! :)
Answer:
a) 
b) 
Explanation:
Let's find the radius of the circumference first. We know that bob follows a circular path of circumference 0.94 m, it means that the perimeter is 0.94 m.
The perimeter of a circunference is:


Now, we need to find the angle of the pendulum from vertical.


Let's apply Newton's second law to find the tension.

We use centripetal acceleration here, because we have a circular motion.
The vertical equation of motion will be:
(1)
The horizontal equation of motion will be:
(2)
a) We can find T usinf the equation (1):

We can find the angular velocity (ω) from the equation (2):

b) We know that the period is T=2π/ω, therefore:

I hope it helps you!
Answer:
1.785 m/s
Explanation:
The momentum can be calculated using the expression below
M1 *V1 + M2 * V2 = (M1+M2) V3
M1= mass of van=9000 kg
M2= mass of car= 850kg
V3= velocity of entangled car
V1= Velocity of the van= 0
V2= velocity of the car= 5 m/ s
Substitute the values
(900×0) + (500×5)=( 900+500)× V3
2500=1400 V3
V3=2500/1400
V3= 1.785 m/s
Hence, velocity of the entangled cars after collision is 1.785 m/s
You may jump higher because the more the mass of the planet, the more gravitational force. There is less mass(and gravity) on Callisto so you wouldn’t be weighed down as much and can jump higher. Whereas on Jupiter there is more weight holding you down.