Answer:
Gravity acts to pull the object down.
The object’s inertia carries it forward.
The path of the object is curved.
Explanation:
The motion of a projectile consists of two separate motions:
- A uniform motion along the horizontal direction, where the velocity is constant; since there are no forces along this direction, the velocity does not change, and so the object continues its motion for inertia --> so, the statement "The object’s inertia carries it forward" is true.
- A uniformly accelerated motion along the vertical direction, with a constant downward acceleration (g=9.8 m/s^2, acceleration due to gravity). So, the vertical velocity changes, due to the presence of the gravity that acts to pull the object down.
- As a result of the combination of these two motions, the object follows a curved path (in particular, it is a parabolic path).
Imagine you were able to throw a ball in a frictionless environment
such as outer space. Once you let go of the ball, it will travel forever
in a straight line, and at a constant speed. (At least until it bumps into
something.)
A car accelerates down the road. The reaction to the tires pushing
on the road is the road pushing on the tires.
Answer:
A fundamental theory that provides a description of the physical properties of nature at the scale of atoms and subatomic particles.
Explanation:
Answer:

Explanation:
For the simple pendulum problem we need to remember that:
,
where
is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:
,
where
is the angular frequency.
There is also an equation that relates the oscillation period and the angular frequeny:
,
where T is the oscillation period. Now, we can easily solve for L:

Even though humans share 100% of the same genes, the instructions contained within the genes are not entirely identical. Each person is unique. People have different hair colors, facial structures, and other traits. These differences between individuals result from very small differences in their DNA sequences. DNA also contains many so-called "housekeeping genes" that control important metabolic processes. As you will see, some of the differences in these genes can cause illness.
Although the DNA of any two people on Earth is, in fact, 99.9% identical, even a tiny difference can have a big effect if this difference is located in a critical gene.