As the minute hand of a large clock forms an angle of 52, the end of the minute hand traverses a distance of 23.5 inches. find t
he length of the minute hand.
1 answer:
The minute hand when moving is swiping a sector
The arc length is given 23.5 inch the angle swiped is 52 degree
we have to find radius
length of arc = 2pi r( theta )/360
23.5 = 2* 3.14 * r ( 52/360)
23.5 = r(0.907)
r= 23.5/ 0.907
r=25.90 inches Answer
You might be interested in
Answer:
82ibs - 40ibs = 22ibs
Step-by-step explanation:
129.26 because 7 is over 5
<h3>Solution:</h3>
![{64}^{ - \frac{1}{3} } ( {64}^{ \frac{1}{3} } - {64}^{ \frac{2}{3} } ) \\ {64}^{ \frac{1}{3} - \frac{1}{3} } - {64}^{ \frac{2}{3} - \frac{1}{3} } \\ {64}^{0} - {64}^{ \frac{1}{3} } \\ 1 - \sqrt[3]{64} \\ 1 - 4 \\ - 3](https://tex.z-dn.net/?f=%20%7B64%7D%5E%7B%20-%20%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%28%20%7B64%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20-%20%20%7B64%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%29%20%5C%5C%20%20%7B64%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20-%20%20%5Cfrac%7B1%7D%7B3%7D%20%20%7D%20%20-%20%20%7B64%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%20-%20%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%7B64%7D%5E%7B0%7D%20%20-%20%20%7B64%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%201%20-%20%20%5Csqrt%5B3%5D%7B64%7D%20%20%5C%5C%201%20-%204%20%5C%5C%20%20-%203)
<h3>Answer:</h3>

Answer:.
Step-by-step explanation:.
Answer:
C
Step-by-step explanation: