1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sattari [20]
3 years ago
9

A box in a supply room contains 18 compact fluorescent lightbulbs, of which 6 are rated 13-watt, 8 are rated 18-watt, and 4 are

rated 23-watt. suppose that three of these bulbs are randomly selected. (round your answers to three decimal places.)
Mathematics
2 answers:
V125BC [204]3 years ago
6 0

Answer:a) Probability P(exactly 2 bulbs rated 13watts)= 0.22

b) Probability(each bulb different rating)

= 0.24

Step-by-step explanation:

There are 6 13watts bulbs

8 18watts bulbs

4 23watts bulbs

Total bulbs = 18

a) Probability that all 3 bulbs are 18watts

Number of ways of pulling 3 bulbs = 18!/(3!×15!) = (6.4×10^15)/7.846×10^12) = 815 ways

Different ways of pulling 13watts bulbs out of 6 = 6!/(2!×4!)= 720/48=15ways

Different ways of pulling non 13 watts bulbs= 12!/(1!×11!) = 479,001,600/ 39,916,800 = 12

Number of ways total= 15×12=180waya

Therefore P(exactly 2 bulbs rated 13watts)= 180/815 =0.22

b) Probability P( all 3 bulbs are 1 from each rating)

Ways of pulling 3bulbs bulb each from 3 ratings are 4× 5 × 8= 192ways

Probability = 192/815 =0.24

lilavasa [31]3 years ago
5 0

Answer:

a) 0.103

b) 0.098

c) 0.235

d) 0.054

Step-by-step explanation:

Total number of bulbs = 18

Total number of 13-watt bulbs = 6

Total number of 18-watt bulbs = 8

Total number of 23-watt bulbs = 4

Let A represent 13-watt bulbs, B represent 18-watt bulbs and C represent 23-watt bulbs.

a) Probability that exactly two of the bulbs are rated 23-watts with order not important = P(C n C n (AuB)) + P(C n (AuB) n C) + ((AuB) n C n C) = ((4/18) × (3/17) × (14/16)) + ((4/18) × (14/17) × (3/16)) + ((14/18) × (4/17) × (3/16)) = 0.103 to 3d.p

b) Probability that all 3 bulbs have the same rating = P(A n A n A) + P(B n B n B) + P(B n B n B) = (6/18 × 5/17 × 4/16) + (8/18 × 7/17 × 6/16) + (4/18 × 3/17 × 2/16) = 0.0245 + 0.0686 + 0.0049 = 0.098 to 3d.p

c) probability that one bulb of each type is selected = P(A n B n C) + P(A n C n B) + P(B n A n C) + P(B n C n A) + P(C n A n B) + P(C n B n A) = 6(P(A n B n C)) = 6 (6/18 × 8/17 × 4/16) = 6 × 0.0392 = 0.235 to 3dp

d) probability that it is necessary to examine at least 6 bulbs if bulbs are selected one by one until a 23-watt bulb is obtained

To do this, we'll group the 13 and 18 watt bulbs as one, (AuB) = A*. n(A*) = 14

Our probability = P(A* × A* × A* × A* × A* × A* × C) = (14/18 × 13/17 × 12/16 × 11/15 × 10/14 × 9/13 × 4/12) = 0.0539 = 0.054 to 3dp

Hope this helps!

You might be interested in
Which property does each equation demonstrate? x2 + 2x = 2x + x2 (3z4 + 2z3) – (2z4 + z3) = z4 + z3 (2x2 + 7x) + (2y2 + 6y) = (2
myrzilka [38]

Answer:

1 . Closure

2. Distributive

3. Closure

Step-by-step explanation:

Here, we want to know the type of property exhibited or displayed by each of the equations in the question.

Equation 1 displays the closure property.

What this means that if we make an addition operation either way, we would get same answer. So we say that addition is closed for that equation.

Equation 3 exhibits closure property as well. If we go either way on the addition operation for that equation, we are bound to get the same answer.

Equation 2 exhibits the distributive property.

Each term in the bracket is multiplied by the subtraction symbol before we proceeded to complete the arithmetic operations

5 0
3 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
What is 1/2 of 9? EVERYONE THAT ANSWER THIS QUESTION GETS A WALMART GIFT CARD FOR $5. BUT COME ON, YOU CAN DO ALOT WITH $5.. :p
taurus [48]
4.5 or 4 1/2
you can keep the gift card :p
7 0
3 years ago
Read 2 more answers
The two angles shown are complementary angles.What is the value of x?
astraxan [27]

Answer:

complementary angles are angles that sum up to 90 degrees. that is all I can say because I can't see any diagram

4 0
3 years ago
Read 2 more answers
Please resolve this is for today
Fynjy0 [20]

Answer:

A Square plus B square equals

Step-by-step explanation:

T

5 0
3 years ago
Other questions:
  • What is the distance?(-4,2) (-2,-2)
    11·1 answer
  • Which pair of angles are vertical angles?
    14·2 answers
  • How do you solve -4+3x&lt;/= -12 +5x? inequalities
    13·1 answer
  • A taxi in new york city charges a flat fee of $3.50, plus $0.75 for every mile traveled. How much would a 6 mile taxi ride cost?
    14·1 answer
  • Fifteen more eleven times a number
    9·1 answer
  • A circular table has a radius of 2 feet. If Jasmine wants to put a piece of border around the whole table, how many feet of bord
    9·1 answer
  • Find each angle measure to the nearest degree
    5·1 answer
  • What is the formula for the perimeter of a semicircle ​
    10·1 answer
  • 356÷3<br><img src="https://tex.z-dn.net/?f=%203%20%5Csqrt%7B333%7D%20" id="TexFormula1" title=" 3 \sqrt{333} " alt=" 3 \sqrt{333
    11·1 answer
  • The diagram below represents which percent?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!