The distance should be 11 cm and the image will be inverted (and smaller)
I used the Lens Equation:

Where:
obj. is the distance of the object
im. is the distance of the image
f is the focal length
Answer:
λ = 3.62 x 10⁻⁷ m = 362 nm
Explanation:
The grating equation gives the relationship between the wavelength, the diffraction line order and the diffraction angle. The grating equation is written as follows:
mλ = d Sinθ
where,
m = order of diffraction = 6
λ = longest wavelength = ?
d = 1/(460 rulings/mm)(1000 mm /1 m) = 2.17 x 10⁻⁶ m/ruling
θ = Diffraction angle = 90° (for longest wavelength)
(6)λ = (2.17 x 10⁻⁶ m/ruling) Sin 90°
λ = (2.17 x 10⁻⁶ m/rulings)/6
<u>λ = 3.62 x 10⁻⁷ m = 362 nm</u>
Answer:
the awnser to the question is Is C
Answer:
304.89m
Explanation:
Given
acceleration a = 2.52m/s²
final speed v = 39.2m/s
initial speed = 0m/s (car accelerates from rest)
Using the equation of motion below to get the distance of Doc brown from Marty;
v² = u²+2as
substitute the given parameters
39.2² = 0²+2(2.52)s
1536.64 = 0+5.04s
divide both sides by 5.04
1536.64/5.04 = 5.04s/5.04
rearrange the equation
5.04s/5.04 = 1536.64/5.04
s = 304.89m
Hence He and Marty must stand at 304.89m to allow the car to accelerate from rest to a speed of 39.2 m/s?
The color violet is the shortest, which is 400-450nm in length