Answer:
The distance traveled during its acceleration, d = 214.38 m
Explanation:
Given,
The object's acceleration, a = -6.8 m/s²
The initial speed of the object, u = 54 m/s
The final speed of the object, v = 0
The acceleration of the object is given by the formula,
a = (v - u) / t m/s²
∴ t = (v - u) / a
= (0 - 54) / (-6.8)
= 7.94 s
The average velocity of the object,
V = (54 + 0)/2
= 27 m/s
The displacement of the object,
d = V x t meter
= 27 x 7.94
= 214.38 m
Hence, the distance the object traveled during that acceleration is, a = 214.38 m
Answer:
x×y=2×2=4. 4×z=4×3=12. 4+12=16
Answer:
force; distance; energy.
Explanation:
An impulse can be defined as the net force acting an object for a very short period of time.
Mathematically, impulse is given by the formula;
An impulse is a force acting over some amount of time to cause a change in momentum. On the other hand, work is a force acting over some amount of distance to cause a change in energy.
Mathematically, work done is given by the formula;