Answer:
CCl4 - Nonpolar
CH3OH - polar
NH3 - polar
CS2 - Nonpolar
Explanation:
One important thing that we should know is that polarity has to do with the presence of a resultant dipole moment in a molecule.
Dipole moment is a vector quantity, This means that its direction is also taken into account when discussing the dipole moment of molecules.
Hence, symmetrical molecules such as CS2 and CCl4 are non-polar even though they have polar bonds because their dipoles cancel out(zero resultant dipole moment).
On the other hand, NH3 and CH3OH are non-symmetrical molecules hence they possess an overall dipole moment and are polar molecules.
Do length x width x height which is 10 cm x 8.2 cm and 3.5 cm. Pay close attention to sig figs as well (or if your teacher doesn't mind all that much then don't fret about it, but mine's really picky!)
Answer:
Explanation:
Take a random sample of nuts from the jar. Let's take two handfuls, after shaking the jar and mixing the nuts thoroughly. Separate the nuts into almonds and cashews. Count each pile, then do the following calculation (these numbers are random, for example only).
<u> Count</u> <u>Percentage %</u>
Almonds 38 (38)/(87)x100
Cashews <u> 49</u> 49/87x100
87 87/87 = 100%
Ratio of Almonds to Cashews: <u>38/49</u>
Accept a pair of nonbonding electrons,a Lewis acid is an electron-pair acceptor. A Lewis<span> base is any </span>substance, such as the OH-<span> ion, that </span>can<span> donate a pair of nonbonding electrons. </span>A Lewis<span> base is therefore an electron-pair donor.</span>
The number of bonds for a neutral atom is equal to the number of electrons in the full valence shell (2 or 8 electrons) minus the number of valence electrons. This method works because each covalent bond that an atom forms adds another electron to an atoms valence shell without changing its charge.