Answer:

Explanation:
Hello there!
In this case, according to the given information and chemical equation, it turns out possible for us to calculate the moles of C2O4^2- by firstly setting up the equilibrium expression:
![Kc=\frac{[[Fe(C_2O_4)_3]^{3-}]}{[Fe^{3+}][C_2O_4^{2-}]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5B%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5BC_2O_4%5E%7B2-%7D%5D%5E3%7D)
However, according to the question, we just need to apply the given 1:3 mole ratio in the chemical reaction, of iron (III) ions to oxalate ions to obtain:

Regards!
Answer:
Answer is: 20 min.Bismuth 214 decay mode to lead is beta minus decay and alpha decay.Beta decay is radioactive decay in which a beta ray and a neutrino are emitted from an atomic nucleus.
There are two types of beta decay: beta minus and beta plus. In beta minus decay, neutron is converted to a proton and an electron and an electron.Alpha decay is radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and transforms into an atom with an atomic number that is reduced by two and mass number that is reduced by four.
Explanation:
To find the number of moles from a mass given, simply look to the formula n (moles) = m (mass, g) / MM (molar mass).
Mass was given, 36.04
Molar mass is the total atomic mass of all the atoms present. Water is H20, so that means 2 hydrogen and 1 oxygen. The atomic mass of hydrogen is 1 and atomic mass of oxygen is 16. Therefore MM= 1 + 1 + 16= 18.
Plug that value in and the full equation is
n = 36.04/18
n = 2.002 moles
= 2 moles
Answer :
The Nernst equation :
![E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Anode]}{[Cathode]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B2.303RT%7D%7BnF%7D%5Clog%20%5Cfrac%7B%5BAnode%5D%7D%7B%5BCathode%5D%7D)
where,
= standard cell potential
n = number of electrons in oxidation-reduction reaction
F = Faraday constant = 96500 C
R= gas constant = 8.314 J/Kmol
T = temperature
[Anode] = anodic ion concentration
[Cathode] = cathodic ion concentration
Answer:
Most substituted alkene is produced as a major product
Explanation:
- Dehydration of 3-methyl-2-butanol proceeds through E1 mechanism to form alkenes.
- Most substituted alkene is produced as major product because of presence of highest number of hyperconjugative hydrogen atoms corresponding to the produced double bond (Saytzeff product).
- Here, a H-shift also occurs in one of the intermediate step during dehydration to produce more stable tertiary carbocation.
- Reaction mechanism has been shown below.