It's Synthesis, single replacement is incorrect.
Answer:
a) ΔHvap=35.3395 kJ/mol
b) Tb=98.62 °C
Explanation:
Given the reaction:
C₇H₁₆ (l) ⇔ C₇H₁₆ (g)
Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.
When
T₁=50°C=323.15K ⇒P₁=0.179
T₂=86°C=359.15K ⇒P₂=0.669
The Clasius-Clapeyron equation is:



ΔHvap=35339.5 J/mol=35.3395 KJ/mol
Normal boiling point ⇒ P=1 atm
Hence, we find the normal boiling point where:
T₁=323.15K
P₁=0.179 atm
P₂=1 atm



T₂=371.77 K= 98.62 °C
Answer:
P and V: inversely proportional
P and T: directly proportional
V and T: inversely proportional
Explanation:
For pressure and volume, as the volume goes up, meaning the container gets bigger, the pressure would go down. There would be more room in the container, so there would be less collisions between the molecules themselves and between the molecules and the container. This makes them inversely proportional.
For pressure and temperature, as the pressure goes up, there are more collisions, so the particles move faster. Temperature is the speed of the particles, so, since both pressure and temperature would go up at the same time, they are directly proportional.
For volume and temperature, this is similar to the PV relationship. As volume increases, there are less collisions between the particles. This means that the particles are going to move slower. Therefore, as volume goes up, temperature goes down, so they are inversely proportional.
Sorry this is super long, but I hope it fully explains the question for you! ☺
In my opinion the answer is identical