Answer:
Chemical energy
Explanation:
Chemical energy is energy stored in the bonds of atoms and molecules. Batteries, biomass, petroleum, natural gas, and coal are examples of chemical energy. Chemical energy is converted to thermal energy when people burn wood in a fireplace or burn gasoline in a car's engine.
Answer:
v0 = 25 m/s
vf = 0 m/s
a = -9.80 m/s^2
change in x = 31.89m
but that's only 1/3 of the hight, so i time it by 3 to get 96m
Answer:
y = y₀ (1 - ½ g y₀ / v²)
Explanation:
This is a free fall problem. Let's start with the ball that is released from the window, with initial velocity vo = 0 and a height of the window i
y = y₀ + v₀ t - ½ g t²
y = y₀ - ½ g t²
for the ball thrown from the ground with initial velocity v₀₂ = v
y₂ = y₀₂ + v₀₂ t - ½ g t²
in this case y₀ = 0
y₂2 = v t - ½ g t²
at the point where the two balls meet, they have the same height
y = y₂
y₀ - ½ g t² = vt - ½ g t²
y₀i = v t
t = y₀ / v
since we have the time it takes to reach the point, we can substitute in either of the two equations to find the height
y = y₀ - ½ g t²
y = y₀ - ½ g (y₀ / v)²
y = y₀ - ½ g y₀² / v²
y = y₀ (1 - ½ g y₀ / v²)
with this expression we can find the meeting point of the two balls
Answer:
The net acceleration of the boat is approximately 6.12 m/s² downwards
Explanation:
The buoyant or lifting force applied to the boat = 790 N
The mass of the boat lifted by the buoyant force = 214 kg
The force applied to a body is defined as the product of the mass and the acceleration of the body. Therefore, the buoyant force, F, acting on the boat can be presented as follows;
Fₐ = F - W
The weight of the boat = 214 × 9.81 = 2099.34 N
Therefore;
Fₐ = 790 - 2099.34 = -1309.34 N
Fₐ = Mass of the boat × The acceleration of the boat
Given that the buoyant force, Fₐ, is the net force acting on the boat, we have;
F = Mass of the boat × The net acceleration of the boat
F = -1309.34 N = 214 kg × The net acceleration of the boat
∴ The net acceleration of the boat = -1309.34 N/(214 kg) ≈ -6.12 m/s²
The net acceleration of the boat ≈ 6.12 m/s² downwards
Answer:
19320 K
Explanation:
The temperature of a star is related to its peak wavelength by Wien's displacement law:

where
T is the absolute temperature at the star's surface
is Wien's displacement constant
is the peak wavelength
Here we have

Substituting into the equation, we find
