The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.
<h3><u>Explanation: </u></h3>
A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.
Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen. "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.
The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.
True is the anwser to your question
Hope this helps
As soon as you let go of it it is at its max speed because gravity is constantly pulling it down
The force between the spheres increases when the mass increases in one of the spheres.
<u>Explanation:</u>
Newton law of universal gravity extends gravity beyond the earth's surface. This gravity depends directly on the mass of both objects and is inversely proportional to square of distance between their centers.

Since gravity is directly proportional to “mass of both interacting objects”, stronger objects with greater gravitational force attract. If the mass of one object increases, gravity between them also increases. For example, if an object's mass of one double, force between them also doubles.