By using what they know to produce new and helpful products
295k=22°c
1050k=777°
total heat needed=
(0.475)(777-22)(specific heat capacity of aluminium)+(0.475)(specific latent heat of aluminium)
Answer: 996 mmHg
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
According to the ideal gas equation:

P = Pressure of the gas = ?
V= Volume of the gas = 25.5 L
T= Temperature of the gas = 13°C = (273+13) K = 286K
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas= 1.42
(760mmHg=1atm)
Thus pressure of this gas sample is 996 mm Hg.
Chemical energy is the kind of energy stored in the bonds formed by atoms and molecules in chemical compounds and elements. This energy is released during a chemical reaction and heat is often given out in the process. These kind of reactions where heat is given out as a by product are called exothermic reactions.
The major factor that determines how much chemical energy a substance has is the mass of that substance. Mass is defined as the amount of matter in a substance.
The higher the mass of a substance, the more concentrated that substance is and subsequently the greater the number of atoms and molecules.
Logically, the higher the number of atoms and molecules then the greater the number of bonds in that substance and subsequently the more the amount of chemical energy stored therein.