Answer:
6.48 L
Explanation:
From the question,
Applying
PV/T = P'V'/T'......................... Equation 1
P = initial pressure of the helium balloon, V = Initial volume of the balloon, T = Initial temperature of the balloon, P' = Final pressure of the balloon, T' = Final temperature of the balloon, V' = Final volume of the balloon.
make V' the subject of the equation
V' = PVT'/P'T......................... Equation 2
Given: P = 1 atm, V = 4.5 L, T' = 253 K, T= 293 K, P' = 0.6 atm
Substitute these values into equation 2
V' = (4.5×1×253)/(0.6×293)
V' = 1138.5/175.8
V' = 6.48 L
Answer:
B. Equal amounts of all gases have the same volume at the same
conditions
Explanation:
Amedo Avogadro found the relationship between volume of a gas and the number of molecules contained in the volume.
The law states that "equal volumes of all gases at the same temperature and pressure contains equal number of molecules or moles".
The law describes the behavior of gases when involve in chemical reactions. It enables one to change over at will in any statement about gases from volumes to molecules and vice versa.
So, the right option is B which implies that equal amounts of all gases have the same volume at the same conditions.
Answer:

Explanation:
Hello,
In this case, is possible to infer that the thermal equilibrium is governed by the following relationship:

Thus, both iron's and water's heat capacities are: 0.444 and 4.18 J/g°C respectively, so one solves for the mass of water as shown below:

Best regards.
Answer:
3–methyl–2–butanol
Explanation:
To name the compound, we must:
1. Identify the functional group.
2. Give the functional group of the compound the lowest possible count.
3. Locate the longest continuous carbon chain. This gives the parent name of the compound.
4. Identify the substituent group attached.
5. Give the substituent group the lowest possible count.
6. Combine the above to get the name of the compound.
Now, let us obtain the name of the compound.
1. The functional group of the compound is Alcohol i.e —OH.
2. The functional group is located at carbon 2.
3. The longest continuous carbon chain is carbon 4 i.e butane. But the presence of the functional group i.e OH will replace the –e in butane with –ol. Therefore, the compound is butanol.
4. The substituent group attached is methyl i.e CH3.
5. The substituent group is located at carbon 3.
6. Therefore, the name of the compound is:
3–methyl–2–butanol.