Answer:
A. T=15.54 °C
B. Q/A= 0.119 W/m2
Explanation:
To solve this problem we need to use the Fourier's law for thermal conduction:

Here, the rate of flow per square meter must be the same through the complete wall. Therefore, we can use it to find the temperature at the plane where the wood meets the Styrofoam as follows:

Then, to find the rate of heat flow per square meter, we have:


The sun’s light and other forms of electromagnetic energy reach the earth by radiation. The mass of the sun acts on the earth (and other planets) by gravity which steers the earth in an almost circular orbit round the central sun.
Answer:
10 m/s
Explanation:
Given:
Amplitude of atomic vibrations (λ) = 10⁻⁹ cm = 10⁻⁹ × 10⁻² m = 10⁻¹¹ m [1 cm = 10⁻² m]
Frequency of the vibrations (f) = 10¹² Hz
In order to find the atom's maximum speed, we need to make use of the formula that relates speed, frequency and wavelength of the vibration.
Therefore, the formula for maximum speed is given as:

Now, plug in the values given and solve for speed 'v'. This gives,

Therefore, the atom's maximum speed due to thermal energy provided is 10 m/s.